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SUMMARY

Jet-A spray combustion has been evaluated in gas turbine combustion with
the use of propane chemical kinetics as the first approximation for the chemi-
cal reactions. In this work, the numerical solutions are obtained by using
the KIVA-II computer code. The KIVA-II code is the most developed of the
available multidimensional combustion computer programs for application of the
in-cylinder combustion dynamics of internal combustion engines. The released
version of KIVA-1I assumes that 12 chemical species are present; the code uses
an Arrhenius kinetic—controlled combustion model governed by a four-step global
chemical reaction and six equilibrium reactions. Our efforts involve the addi-
tion of Jet-A thermophysical properties and the implementation of detailed
reaction mechanisms for propane oxidation. Three different detailed reaction
mechanism models are considered. The first model consists of 131 reactions
and 45 species. This is considered as the full mechanism which is developed
through the study of chemical kinetics of propane combustion in an enclosed
chamber. The full mechanism is evaluated by comparing calculated ignition
delay times with available shock tube data. However, these detailed reactions
occupy too much computer memory and CPU time for the computation. Therefore,
it only serves as a benchmark case by which to evaluate other simplified
models.

Two possible simplified models have been tested in the existing computer
code KIVA-1I for the same conditions as used with the full mechanism. One
model is obtained through a sensitivity analysis using LSENS, the general
kinetics and sensitivity analysis program code of D.A. Bittker and
K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species.
The other model is based on the work published by C.K. Westbrook and
F.L. Dryer. This simplified model consists of 5 chemical reactions and 12
species. The numerical results indicate that the variation of the maximum
flame temperature is within 20 percent as compared with that of the full mech-
anism of 131 reactions. The chemical compositions of major components such as
C3Hg, H20, Oy, COz, and Ny are of the same order of magnitude. However, the
concentrations of pollutants are quite different. Details are presented later

in this paper.



INTRODUCTION

The goal of gas turbine combustion system design and development is to
meet many mutually conflicting trade-offs between high combustion efficiency
over a wide operating envelope and low NOy emissions: low smoke, low lean
flame stability limits, and good starting characteristics: and low combustion
system pressure loss, low pattern factor, and high structural durability.
Recent advances in high-speed and large-memory computers. numerical algorithms,
grid generation, and combustion modeling have a powerful positive influence on
future design capability. To accurately model combustion system subcomponents,
significant improvements in physical modeling and numerical techniques are
required.

In this work, a detailed chemical kinetics mechanism of a simple hydrocar-
bon, such as propane, is used to predict combustion flows and emissions of
typical combustion systems representative of gas turbine combustors using
multidimensional codes. Previous multidimensional computations of combustion
and flow characteristics of gas turbine combustor sector or subcomponents used
global or quasi-global chemical kinetics mechanisms. These combustion models
may be able to predict qualitatively the average value of heat release; how-
ever, they are unable to predict local chemical equilibrium and detailed com-
bustion species profiles, including NOy emission. In the current work, the
fuel used is Jet-A, whose physical properties are known and are given later in
this paper. However, the chemical kinetics for Jet-A combustion with air are
not presently available. It is necessary to use the propane chemical kinetics
for the simulation of Jet-A combustion as a first step approximation. However,
even the chemical kinetics for propane are not well understood. In this work,
the propane oxidation mechanisms consisting of 131 reactions (ref. 1) are used
to perform benchmark computations and serve to evaluate the other two reduced
mechanisms.

The numerical simulation is done by using the code KIVA-II, which was
originally designed for the simulation of turbulent reactive flows in piston
engines. The code is modified for testing propane chemical kinetics in two-
dimensional gas turbine combustion. The purpose of using the KIVA-II code is
that it is considered to be very well developed and represents present state-
of-the-art. A description of KIVA-II and its modifications will follow.

DESCRIPTION OF COMPUTER CODE KIVA-II

The computer code KIVA-II was originally designed to simulate numerically
transient two- and three-dimensional reactive fluid flows with sprays in piston
engines. The dynamics and evaporation of spray droplets. spark ignition, the
chemical kinetics of combustion, turbulence. and the boundary effects of the
flow near the walls are considered in detail. Turbulence is modeled by using
two-equation k-e¢ model equations and an implicit-continuous Eulerian (ICE)
technique is used for the flow solver. A stochastic particle method is used
to calculate the evaporation rate of liquid sprays. The effects of droplet
collisions and aerodynamic breakups are included in the computations. Octane
was the fuel originally used in the combustion. Properties of several other
hydrocarbon fuels are provided in the subroutine fuel, so that the combustion
of other fuels can be simulated. However. Jet-A properties are not included.
Detailed descriptions of the equations and the numerical method of solution
are discussed in reference 4.



MODIFICATION OF KIVA-II
Jet-A Fuel Properties

In order to use Jet-A as the fuel for combustion, the properties of Jet-A
were implemented in the subroutine fuel. The information includes the

following.

Chemical symbol, Cq3 Haj

Molecular weight, 176.315

Critical temperature, 668 K

Heat of formation (0 K), 72.53 Kcal/mole
Surface tension (350 K), 18.85 dynes/cm

The enthalpies, latent heat, vapor pressure, and liquid viscosities of
Jet-A fuel are given in appendix A from a computer printout.

Modification of Subroutine "RINPUT"

Because the number of species appearing in the combustion of propane is
different from that of the combustion of octane, the enthalpy data of species
must be modified in the subroutine RINPUT. The numbers of species for 131,
45, and 5 chemical reactions are 40, 27, and 12, respectively. The enthalpy
data in the subroutine RINPUT are arranged according to the order of species
appearing in the reactions. All the data are listed in the temperature range
from O to 5000 K in increments of 100 K. A list of the 40 species is given

below.

C3Hg ., O3, Ny, COy, H0, H, Hy, O, N
OH, CO, NO, CH, CHy, CH3, CHy0, CH30
CyH3, CoHg, CoHg, CaHy HCO, HO9, NOp, CHyg, CoHa
CoHg, CN, CoH, CoHO, HCN, HNCO, HNQO, HNO»
HNO3, Hy 09, NCO, NH, NHy, N,0

A list of enthalpies for the 40 species appears in appendix B.

Modification of Input Data File

The major change is in the data provided for the chemical kinetics. As
an example, the input file for the simplified chemical mechanism is shown in

appendix C.

JUSTIFICATION OF THREE MECHANISMS FOR THE COMBUSTION OF PROPANE WITH AIR

The full mechanism. consisting of 131 chemical reactions, 1s considered
to be the standard for this evaluation. This standard is established through
two extensive studies. In the first study (ref. 1) the numerical predictions
of pollutants NO and CO were compared with experimental measurements. They
were found to be in good agreement. In the second study (ref. 2) the number
of reaction equations was already 131. The full mechanism was further sup-
ported by the ignition delay time checked with the shock tube data.



The mechanism with 45 reactions has been considered to be the first possi-
ble reduced mechanism for saving computer memory capacity and CPU time. The
45 reactions were determined through sensitivity analysis by mixing propane
and air in a container with a definite volune. The results of temperature,
pressure, and species concentrations versus time from 45 reactions were com-
pared with those from the full mechanism. They were in fairly good agreement
(ref. 2).

The combustion of propane in the simplified mechanism consists of five
reactions. Two of the equations are obtained from Westbrook and Dryer
(ref. 3), and the other three are from the original input file of KIVA-II
describing the extended NOy Zeldovich mechanism. In addition, the six equilib-
rium reactions described in reference 5 are also used with this five-kinetics-
reaction mechanism. The five reactions, together with the reaction constants,
are given below.

1. C3H8 + (3/2 + 8/4) 02 = 3C0 + 4 H20
12 0.1 1.65
kf = 10°" Exp(-30/RT) [C3H8] [02]

K, = 0
2. 00 +1/20, - C0,
Ke = 10" Exp(-40/RT) [CO] (1,01°*% [0,]0-%5
K, = 5x10% Exp(-40/RT) [co,1*
3. 02 + 2N2 = 2N + 2NO
14 4 2
Kg = 1.5587x10°" Exp(-6.7627x10°/T) [0,] [N,]
K, = 7.500x10"% Exp(0) [N]? [NO]?

4. 202 + N2 = 20 + 2NO

2.6484x10'0 Exp(-5.9418x10%/T [02]2 [N, ]

1.6x10° Exp(-1.9678x10%/T) [0]% [N0]?

5. N, + 20H = 2H + 2NO

2.123x101* Exp(-5.7020x10%/T) [N]2 [oH]2
0



RESULTS AND DISCUSSION
Comparisons With Data of Direct-Injection Stratified-Charge
Piston Engine Combustion

The three mechanisms of propane chemical kinetics were tested first in
KIVA-I! with computations of direct-injection stratified-charge (DISC) combus-
tion in gasoline-fueled piston engines. The specifications and test conditions
for the piston-cylinder configuration are listed in table I. For these calcu-
lations, the numerical grid consists of 20 grid points in the axial direction
and 22 grid points in the radial direction, A Bessel function velocity profile
(ref. 4) was used to simulate the swirl velocity profile of the incoming air.
Standard boundary conditions were used in this two-dimensional axisymmetric
engine model and the details are described in reference 4.

The three mechanisms of propane chemical kinetics were evaluated by com-
parisons of data obtained from the numerical simulations of the DISC piston
engine. In all test cases, the simulations were started at the beginning of
the compression stroke and ended at the crankangle of 65° ATDC. For the base-
line case, case 1, a quasi-global mechanism of isoctane oxidation was used
together with the extended NOy Zeldovich mechanism and six equilibrium reac-
tions (ref. 5). The propane chemical kinetics mechanism for case 2 consists
of five kinetic reactions and six equilibrium reactions (these six equilibrium
reactions are the same reactions considered in case 1). In addition, the
45-reaction mechanism and the 131-reaction mechanism of propane oxidation were
also examined (cases 3 and 4). Table I summarizes the test conditions for
cases 1 and 2. For cases 3 and 4, the starting crankangle of ignition was set
at 27° BTDC for an ignition duration of 9.6 degrees. In all cases studied,
liquid isoctane was injected starting from 52° BTDC for an injection duration
of 12.672 degrees in an amount that corresponded to an overall equivalence
ratio of about 1.0.

Figures 1 and 2 show the computed mean gas velocity, fuel spray, tempera-
ture profile, fuel vapor, and CO profiles at a crankangle of about 29° and 13°
BTDC for cases 1 and 2. Comparisons of these results indicate that the five-
reaction mechanism of propane oxidation (case 2) predicts a similar combustion
rate and slightly lower maximum flame temperature compared with the results
predicted by the four-reaction mechanism of isoctane oxidation {(case 2). These
results also indicate that the flame temperatures are lower than the corre-
sponding local equilibrium temperature.

Figures 3 and 4 show the computed mean gas velocity, fuel spray, tempera-
ture, and fuel vapor profile near TDC for cases 3 and 4. It may be seen that
the flame is not well propagated and diffusive throughout the engine chamber.
The temperature plots of figures 3 and 4 reveal that the predicted maximum
flame temperature concentrates only within a small region downstream of the
injector tip. This observed low combustion efficiency is probably due to poor
fuel-air mixing, ignition, and combustion rate as a result of non-optimal
engine design and test conditions. The maximum flame temperatures observed
for cases 3 and 4 are lower than the corresponding equilibrium values. The
observed flame temperature from the mechanism of 45 reactions is lower than
that of the full mechanism. This indicates that in the 45-reaction mechanism



more endothermic reactions and fewer exothermic reactions are considered on a
relative basis.

Comparisons With Data of Model Airblast Fuel Nozzle/Reactive Flow

The model airblast-type fuel nozzle used in this study is shown in fig-
ure 4. It is a typical fuel nozzle used in gas turbine combustors. It embod-
ies inner and outer airstreams which help to atomize and distribute fuel
sheared from a thin annular sheet. The model fuel nozzle injected fuel b¥
means of an annular fuel passage with the nozzle tip exit area of 0.03 cm?.
The fuel exit area is defined by the tip of the core inner air pipe and the
position of the wedge-shaped fuel-filming lip of the fuel flow passage. No
swirl is imparted to the fuel flow. This fuel nozzle produces a hollow-cone
fuel spray with a nominal included angle of 75 degrees. The nonswirl inner air
is supplied to the core air pipe with exit an diameter of 1.0 cm. The outer
airflow is swirled by a vane assembly. Different vane assembly designs were
evaluated. The end cap of the outer air shroud imparts a radial-inflow compo-
nent to this airflow; the end cap exit area is 3.24 cm2.

The flowfield downstream of the fuel nozzle is axisymmetric without con-
finement. For these calculations, the numerical grid consists of 60 grid
points in the axial direction and 52 grid points in the radial direction.
Boundary conditions are applied to the inlet, outlet, solid walls of the fuel
nozzle, and centerline of the unconfined flow downstream of the fuel nozzle.

A brief description of these boundary conditions are as follows. In this work,
the effect of outer air swirler designs on fuel atomization and spray patterns
is examined. For the baseline case, the outer air inlet flow is assumed to
have a zero mean radial velocity and is characterized by a uniform axial veloc-
ity and pressure and an azimuthal velocity profile of a solid body rotation.
The inner air is assumed to have zero mean radial and azimuthal velocity, and
enters the core air pipe with uniform axial velocity and pressure. The temper-
ature of the inner and outer air is assumed uniform and equal to 1367 K. The
profiles of turbulent kinetic energy and turbulent length scale are taken from
reference 6. At the solid walls the velocity component normal to the wall is
set to zero while the law of the wall is applied to the velocity component
parallel to the wall. The normal gradient of turbulent kinetic energy near the
wall is set to zero and the dissipation rate of turbulent energy is calculated
by using an equilibrium boundary layer. The turbulent length scale is assumed
to vary linearly with distance from the solid walls. At the unconfined flow
centerline both the radial and azimuthal velocity components are zero. while
the radial derivatives of the other flow quantities are zero for reasons of
symmetry. The model airblast fuel nozzle is sized for nominal inner air, outer
air, and fuel flow rates of 1.3 gm/sec, respectively. A Rosin-Rammler droplet
distribution function is used. The calculations are performed with a time step
corresponding to 5x10~% sec, and 3x10° droplet parcels are injected at each
time step.

CONCLUSIONS

Throughout this work it can be seen that the numerical simulation of
octane combustion in KIVA-II is used as a guide for propane combustion because
accurate experimental data for octane combustion are well known and available



for direct comparison for cascade validation. On the other hand, the adiabatic
flame temperature of propane combustion is another checkpoint to be considered.
When the air temperature is 1033 K, the propane temperature 311 K and the pres-
sure 1 atm, the adiabatic flame temperature is 2560 K. Because of the vapori-
zation of liquid fuel, either Jet-A or octane, and the heat transfer to the
surroundings, the flame temperature is lower than the adiabatic flame
temperature. '

All simulations are carried out on the CRAY X-MP computer at the NASA
Lewis Research Center. Because the chemical kinetics are only a part of the
whole simulation, the changes in the CPU time and memory space which can be
directly attributed to the kinetic mechanisms for three different mechanisms
cannot be clearly accounted for at the present time. Consequently, no
definite numbers are reported.

In the prediction of pollutants NOy and CO, it is observed that the full
mechanism of 131 reactions is more reliable than the other two mechanisms.

Under the same conditions stated above, a comparison between the combus-
tion of octane and propane is made. The profiles of velocity and temperature
are presented in figures 5(a) and (b). These simulations are performed with
the understanding that, for the first 1000 cycles of calculations, the combus-
tor is filled only with the airflow, the fuels are injected after 1000 cycles
and then ignited. The ignitor is located on the fuel path. The amount of fuel
is nearly stoichiometric. The chemical kinetics for the combustion of octane
consist of 4 reactions, and for propane 5 reactions. The mechanisms of 131 and
45 reactions are to be investigated in the near future.
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APPENDIX A
JET-A FUEL PROPERTIES

THE ENTHALPY DATA BELOW ARE COMBINED FROM JET-A(L)
JET-A (Cl12H23) IN THE TEMPERATURE OF C--500K AND JET-A(G) IN THE
TEMPERATURE OF 400--5000K
data (hkyjaln).,n=1,51) / 0.00, 7.3462.15. 342,22, £92.32.082,43. 272,
34. 21, 66.38., 79.61, 93.77,108. 71,124, 30, 140, 44, 157.08.174. 15,
191. 61, 209. 42, 227. 53, 245. 90, 264. 51, 283. 31, 302. 29, 321. 42, 340. 68,
360. 06, 379. 52, 399. 07, 418. 69,438. 37, 450. 11, 477.89,497. 72, 517. 59.
537. 50, 5357. 44, 577. 42, 597. 44, 417. 49, 637. 58. 657. 70, 677. 85, £98. 05,
710. 27, 738. 52, 7506. 80, 779. 10.797. 41, 819. 73, 840. 04, 840. 34, 880. 62/
the liquid latent heats, in ergs/gm, at intervals t=100(n-1):
values between 300k and upper limit taken from n.b. vargaftik
"tables on the thermophysical properties of liquids and gases"
values are linearly extrapolated back to t=0 k.

Jet~-A latent heat values in range 0-500k:

data (hlatja(n),n=1,51) /3. 792e9,3. 598e%, 3. 405e9, 3. 208e9,
2. 842e9, 2. 425e9, 45+0. O/

the liquid vapor pressures, in dynes/sq. cm., at intervals
t=10(n-1). also taken from vargaftik. note that each table
must contain values beyond tecrit of the fuel to protect against
over-reaching in subroutine evap. also note that pvap is
dimensioned at lvap words in common /lek/ in comdeck comd;
lvap must be adequate for all fuels in the library.
for heptane, dodecane, tridecane and
hexadecane, the vapor pressure is scaled with temperature
using eqn (see reid, prop. of liq. and gas. eqn &-2.4,2.5)
In(pv)=1n(pvO)=(lnipvl)=1n(pv0))((t-tO)/(t1-t0))nti/t
w/ ti=tecrit, t0=520k (dodecane), t0=510k (tridecane)

+++Jet-A vapor pressure every 10k in range 10-690k (tcrit=4468k)

+ 4+

+++
+ 4+
++ 4+
+4++
+++
+++
+ 4+
+4++
+++

TNV DWW -

1
2

data (pvapja(nl),n=1,69) /. 0O0E+Q0, . O0E+00, . OOE+QO. . O0E+00, . 0OE+00,
. 00E+00, . OOE+Q0. . OOE+00, . QOE+DO, . 29E-09, . I8E-07, . 57E-0&6. . 1 LE-04,

. 13C-03, . 11E-02, . 746E-02. . 41E-01., . 18E+Q0, . £8C+00, . 23E+01. . 67E+01,
. 1BE+02, . 44E+02, . 10E+03. . 22E+03, . 44E£+03, . B4E+(Q3, . 1SE+04, . 27E+04,
.43E+04, . 74E+04, . 12E+05. . 1BE+05, . 27E+05, . 40E+05. . 57E+05, . 80E+05,
. 11IE+06, . 15E+06, . 20E+06. . 27E+06, . 35E+06, . 450C+06,  STE+06, . 72E+06,
. QOE+04&, . 1IE+Q7, . 14E+07, . 16E+07, .  20E+07, . 24E+07, . 28C+07, . 33E+07.
. 39E+07, . 45E+07, . S3E+07, . 61E+07, . 70E+07, . QOE+Q7, . 21E+07, . 10E+08,
. 126+08. . 13E+08, . 15C+08, . 16E+0B, . 1BE+08, . 20E+08, . 22E+08, . 24E+08/
the liquid viscosities, in gm/(cm sec). as in the vapor pressures
abave, the intervals are t=10(n-1), and the tables contain values
beyond tcrit of the fuel. note the visual extrapolation required
for dodecane, tridecane, tetradecane and hexadecane, for lack of
tabular data. this needs improvement, esp. around tcrit.

Jet-A liquid viscosity every 10k from O0-410k (tcrit=4646B8k) data
obtained from HB of Aviation Fuel Praoperties 1984.

ata (vislqya(n),n=1,42) /23#0. 1482, 0. 08811, 0. 05607.0. Q3845
0. 02804, 0. 02163, 0. 01722, 0. 01386, 0. 01161, 0. NO98BS, 0. 00B57, 0. OO745,
0. 00657, 0. 00523, 0. 00529, 0. 00473, 0. 00433, 0. 00392, 0. 00360, 0. 00336/
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APPENDIX B

ENTHALPIES OF ADDITIONAL SPECIES

< € (hktn,271.n31.5107-2.514, -1
C +4¢ CH ldal: 0 n; 71.“ 7.ls 9'1; .l_.
c data (hkln,13),n21,510/-2.061.-1.342.-0.445, 0.013, 0.711. 1.411, 2 740330 260990 2983 521430 35
1 2.12. 2.83. 5.%. 4.3, 5.07. 5.85. &.65. r.e1. 8.30, 3 ekl 52.54, 55‘25- ;'~§g- :;
o [ . . - . . . . . .
2 %15, 16,02, 10,90, 11.79, 12.69. 13.40, 14.33, 15.46. l4.41, ¢ TA.3A ;; g; 1?5 - 113 10
3 17.3A. 18.32, 19.28. 20.26. 21.23. 22.23, 23.2L. 20.70. 25.20, 5 104.11,107.20, .28, .38,
& 24.30, 27.21. 2B,22. 27.23., 30.25. 31.26. 32.23. 33.30. 34.32, € oese
S 35.34, 36.37. 37.39, 38.641, 39.46, G0 .46, 6).43, .50, 43.52/ E o cn
IO -2.073,~1
C oo CN2 PATA (HKIN,28),HN=1,%137-2.0 ’ .
1 J15. 2.87, 3.65. 4.2, 5.
C s
data (hk(n.lﬁ).ntl 51)7- z 375,-1.%81,-0.78S5, 0.01S, 0.833, 1.479, 2 9.35. 1¢.19, 11.05. 11.21. 12
3 17.41, 18.36, 17.32, I0.27. 21.
1 2.56. 3.47. a3, 4L, &.44, 7.50, 8.60. 9.73. 10.88. <
2 12.06. 13.26. |4 «g, 15 72, 14.93. 18.25. 17.54. 20.83, 22.14, & 24.31. 27.35. 28.37, ':';3' fg
3 25.64, 24.79, 24.13. 27.47, 283.32..30.17, 31. 32.89. 34.26, 3 35.83. 36.93, 38.02, 39.12, .
4 35.63. 37.00, 38.33. 59.76. €1.14, 42.52, &3.91, 45.27. %6.88, C osbs
$ 48.07, 49.47, $0.36, 52.26. 55.66. 55.06. Sé.46, S57.37. 59.28/ E 58 cH
C oss CHS DATA (MK(N,29),H=1,51)/-2.356,-1
1 312, .24, 5. 40. 6.40, 7
€% data (hkln,13).01.3107-2.477,-1.682.-0.845, 0.017, 0.975, 2.012. 2 14.62. 16.04. 17.53. 17.01. 20.
17 3.2, <.31. 5.3, 4.33, 8.25, 9.69, 11.17.12.70, 1¢.26. I 230750 29076, 31.3Z. 32.33. 34
2 15.37, 17.51. 19.18, 20.83, 22.60, 26.34, 26.11, 27.33, §9A37. B ae LNra3l AsI3n ws 91l aa
3 31.S1. 33.35. 35.17. 37.02. 33.88. 40.74, 42.61, «4.49, 46.37. S sc.21. S7.74. 33.23. £0.82. 62.
 4A 26, S0.15. 52.05. 5$5.95. S$5.AS. 57.764. 57.67. 61.38, 63.50. C ore
S 65.42, 67.54. &9.27, 71.20. 7313, 75.06. 77.00. 73.94, 80.83%/ £t cnco
C *40 C s .
€ *4+ CH2O DATA C(HK{N,30),H= 1 51)7-2.636,~1
1 3.63. f.97. 6.36. 7.81. 9
€ %% sata (hk{n.16).n:1.511/-2.375,-1.600,-0.803, 0.016, 0.905, 1.394, 2 ol 1es, :n>,5_ 2262 2%
172,99, 4.20, $.49, 4.87, 3.31. 9.2, 11.38, 12.98. §:.:g. R IAR AR AR E LS S F S PO
2 16,29, 1s.on. 19.74. 21.S50, 23.29. 25.09. 26.91. z;.;?. 30.60. YOI s M5 salzol ss
3 52.44, 36.34. 36.22. ss.l;. ;g gn- ;é ?9- 43.80. 3 a0, 64.93. S §7.87, 69.81, 71.75, 13.69, 75
.22, LA . . . .
s ceiar; K 33t 33 I0: 3L Te ss. 78054, s0le9. 8245/ € e
C *re C ¢4+
z - 7.-1
C ¢4+ CH3O DATA (HX(N,31).,M=21,51)/-2.207,
I 2.91, 3.98, 5.09. &.26. 7
€ data (hk(n.l7)-nll $1)/-2.431,-1.636,-0.836, 0.017, 1.003, 2.1?7. L33l 1507, 16 ez, 17 780 19
15 as. A6, 6.57, 8.23,710.07. 11.99. 13.96, 15.94, 18.07. S za.zo. 27.63. 29.07. 30.52. 31
2 2020, zz.su. 24.60. 26.85. 29.14, 31.46, 33.80, 36.16. Jg.gé. A s 2ias avrs as
$ 40,74, «3.35. 45.77. 43.21. 50.66. 33.11, 55.57. 53.05. 60.30. S 33Tayl sele. s5leé. s7.1e. st
o 52,98, K5.48. 67.94, 70.43, 72.92, 75.41. 77.91, B0.41. 82.91, C e
s 85.42, 87.93. 90.44. 92.96. 95.¢8. 93.01.100. 340105 080105 617 €1l wco
’ C ses
C 4 K e
1 S1)/-2.620.-1
C +%% C2HS DATA (HRCH,32).H=
1 3.7, 5.22. 6.71, 8.26. 9
C eor - 1.046, 2.266. .5
181, bz, 458,-1.645,-0.840, 0.01%, 1. Z 13.31. 20.08. 2lars 2tles. 25
lda!a (?T(n,l§; ntz ) (&3, 10.29, 12.19, 14.16, 16.13. ln.zg. § 3481, 36,70, 32.60. 40.50, 42
2 2M.37. 22.%6. 24.77, 27 pl. 27.29. 31.59. 33.92. 3«.z§. 23.5“. Y 32,00, S3l9%. 35,86, <7.79. 59
3 61.03, 45.446, G5.85, 43.23. ;o ;}. ;g zg. ;; g}. 52'21' AN S 49.45, 71.58., 73.33. 15.28, 77
aa, . . . . .
P RIS R AT 19 as: 3327, 97:99.100.32.103.05,105 59/ c
C ovs -
€ tes C2mM3 DATA (HKCH,33).H%1,510/-2.576,-1.
C 4ot - - 025, 1.394, 3.015, | p PSR '
N 1)7-2.939,-2.100,-1.101, 0.0Z .64, 3 .RZ, 4GRS, 5.75. 6.
1d." i?“‘"s’ll.“‘é ?7. 11.85, 14.08, 14.72, 19.47. 22.31, 25.23, 2 1503, 14.37. 15.73. 17.12, 18,
2 20 3% s 2% 34.ca. 3753, 7080, G6.06, 47.3&. 50.47. 51.05, 32591, 27.45. 28.97. 30 S1. 32
S S7 4%, s0.an. s4.26, 87.70. T1116. 76.62, 78.10, 31.33, 35.07, o 39098 allsil 31 e i3l e
$ 34057, 92,08, 95.59. 99.11.102.63.104.16.109.69.113.25.116.77, 5 54.30, $5.87, S7.47. 57.05, 6a
S 120.32,125.88,127.46,131.01.134,59,138.17,141.76.145.36,143.9¢ 2 e .
44+ HNO
c [T X3 C bee
Coser CING DATA (HK({N,34) NzY1.S51)}/-2.772,-1
€ oot 23. 1.430, 3.138, [P Tl
42.-2.033,-1.104, 0.023. 1 3.90. $.13. 6.92. &.51, 10.
Aty (s iey ) dssidte 121390 2181, 24073, 28,08, 2 13171, 20.58. 7z.%0. 24.23. 26
Ll ilr s502) 3mlel. €2.24. 45.37. 49.73, 53.34. 57.39, £1.27. 333.67. 37037, 39.28, «il17, 43
2 ;'19' $9.14. 75.10, 77.07, 8i.10, 85.12, 87.16. 93.20. 97.26. 4 52.7%. 5%.67. Sh.62. S3.56. 0.
2 ‘1')5'1us'ao'|uﬂ'«!-lll 117 eko120.77.125.87.129.99, 154 11, S 70.24, 72.19, 74.14. Tu.l0. 78
S 138.24.142.37.146.51,150.46.154.82.158.99.163.16.167.54.171.52/ E Y s
Cosee C ees
C +ss C3H? DATA (HK(I1,351.N21,511/-0.838,-2.
C see 1 4.87, 6.80. B.83. 10.74, 13.
data (hk(n,21).n71,51)/=3.378,-2.6487,-1.405, 9.030. 1.A98, 4.200, 2 26.45. 26.80. 29.16, 31.33. 33.
1 6.9n, 9.95, 13.28, 16.84, 20.A1, 24.58. 28.69, 32.93, 37.30, 3 46.02. 4&.%5, 50.90, $3.34. 55,
2 &1.77. A4.3%, SA.93, 55.71, 60.50. 65.35. 70.26. 75.21, 30.19, G 63.04, 70.69, T2.94, 15.39. 77.
S AS.21. 90.24, 95.34.100.65,105.54.110.67,115.81,120.96,126.11, S 90.13, 92.57, 95.05. 97.52, 99.
A 131.28.136.65,160.65.146.82.152.01,157.21,162.61.187.62,172.84. C bee
S 178.06.183.29.183.85.193.7/.199.03,206.29.309.56,214.84,220.137 E ere K202
C (XN ’e
£ ++v HCO DATA (MK(N,36). u~l.51) 2,667, -1
‘e 1 3.47, G.79. 16, 7.58., k]
¢ data (hk(n.ZZ).n'l $1)/-2.587,-1.595,-0.796, 0.015, 0.864, 1.760, 2 16.95, 18.62. zo.sz. T.04. 25
1 2.7%. 3.71. 4.7, 5.85. 6.78, &.14. 9.32, 10.53, 11.75, 5 32072, 36.55. 36.40, 33.25, 40
2 12.99. 14.25. 15.53. 16.82, 13.11. 19.42, 20.7%, 22.07, 23.40 4 49.54, S1.4S, 53.36. Sh.28. 57
3 za.74. 26.00, 27.44, 24.79. 30.15. 31.51. 32088, 34.25. 35.62. S 66.91, 68.86., 70.85., 12.79. Ta.
4 36.99. 38.34. 39.74, 41.12. 42.50, &3.89, 45.27. €6.66, ¢3.05. C oo
5 49.46G. 50.34. 52.24. 53.4%, 55.04. 5&.4%, 37.85. 59.26, 60.67/ E ses nco
C +se - s
C e+ HOZ DATA (HK{N,37).Mx1,51)/~2.%63,~1
C 4o 1 3.24, 6,47, S5.73, 7.02, 8
data (hk(n,23).n%1,51)/-2.392,-1.594,-0.300, 0.015. 0.378, 1.798, 2 15.21. 16.63, 18.05, 19.4A4. 20
1 2.77, 3.80. 4.2, 5.96. 7. 0'- 8,36, 9.42. 10,62, 11.85, 328,18, 29.6%, 31.11, 37.57, 34
2 13,07, 14.%4. 15.4%, 14.75, 18.37, 19.40, 20.9%. 22.31., 25.487. 4 41,40, 42.87, 6%.34, 45.81, A7,
325008, 26.4A. 27.A%. 29.31. 30.7«. 32,11, 33.63. 33.0A, 36.5%, S S4.66, S6.164, S7T.82, 59.10. 60.
& 3A.01. 37.48. 4N.95, AZ. 43, 63.72. 45.40, 4&.39, 48.37, G9.88. C oser
S 51.37, 32.87. 56.37, $5.87, S7.37., 58.36, 60.36, 61.86. 63.36~/ € ves NN
C s C ses
€ oses nO2Z . DATA (MK(N.38).1=1,511/-2.0%6,~1
C oeoe PoZ.11. 2.82, 3.%4. 4.36, S
dats (hk(n.24).n21.51)/-2.660,~1.665.-0.839, 0.016, 0.964, 1.949, z  ale0. alTt. 10.53. 11.34: 12
Vo 3.0%, .16, 5.35. 6.S57. 1.2, 9.10, 10.39, 11.78, 13.02. Y 16 81, 17.59. 18.78. 19.18. 20
3 1al3&. 15TLL 17 01, 18,46, 17.A2. TL.J1, 22,69, 24.01. 25.42. 4 2669, I5.63. 26.57, I71.51, I8
Y e 34, T8.26. 27.70, 31.13. 32.%3, 34.03. ¥5.49, 34.75, 38.42, 5 33.34, 34.53, 35.35, 36.55. 37
A 3790, Al.38. 42.87. 44,31, 45.87. 67.39. 4§.91. 38.43, 51.97. € vas
S 53.%52, 55.07. S6.63, 58.20. 59.79. 61.38, 42.97. 66.53. 66.20/ C vee nHZ
C ebs K
C ese CHG : DATA C(HK(H,39).K*1,50)/-2.375,~1
C sre
. . .394,-1,60%.-0.805, @.016, 0.924, 1.942
Rt i S S S SO VS S S PORNT ST T IR TR T IR T Lo2.36. 347, 4.42. 5.40. 8
2 17.08. 21.26. 23.50. 25.80. 28.14, 30.52. 32.96. 15.40. 37.90, 2o1l2o0l. 13.21. dn.65. 15.67. 16
3 4042, 42.978. 45.56, 4B.1h. 30.73, 53.45. %6.09. 58.77, 61.47, 323,47, 24.34. 26.21, 27.37, 20
o 44 17, 66.92. 49.67. 72.nS. 75.20. 77.79. 30.830. A3.62, 84.45. % 36,06, 3750, 3A.9S. 4Q.An. 4l
S 57.30, 92.16. 15.04. 97.94.100.86.105.77.106.71.,109.66,112.637 S a9.27, 30.76. 32.26. 53.77. 55
C s C es
C s+s CINZ C ses 420
C »i0 Ry . -
71,-1.6%,-0.933. L0119, 1.151. 2.407, DATA (KKCH, 40)_"-1 5|)/ 2.210,-1
16"1 ;?k("éz?::"'l 2;3/ §_§uf 9.79. 11.44, 1 12, 16.85. 16.61, VoS A el s 437,
2 1A.4n. 20.25. 22.08. 23.74. 25.83%. 27.77. 29.71. 51.66, 33.63. 3 o107 14 44l e 17310 g0
1 55.a2. 37.61. 57.62. A1.84, 43.86. ©5.70, 61 74, 69.79. 51.85, 5 28013, 29.62. 31.11. 32.6l. 3%
A %3 9%, $5.99. S8.07, 40.16. 62.3%3. 44,35, K& .66, A8.57, 70.69, A al.63. 63.20. 4a.72. 46.2%, &7
s 72.8%. 14.95. 77.09. 19.23, 81.33. 83.54. 85.70. 87.37. 90.05/ § 55.45., 37.00. $B.S4. 60.09, 61.
C e c ses
€ vee CING

.81,

N

.600,-0.384,
.86,

-nS,
.68,

.883.-1.006,
3.
.60,
.04,
.25,
.64,

.824,-0.540,
.85,
.50,
Lat.
.13,

re-n

L1l
e
76,

.6%91,-0.370,
L34,
.92,
.06,

. 384,
.01,
.20,
.0x%,
.68,

AN

.587.-0.788.

.a3, 7
.93,
.18
.87,
o8

14 an,
3a.0n, «0.89,
&n.69, &7.50,
91.32. 9.4,

9.-0.907,
. 14.7

390,-0.633,
22, 6.02.

13.7), la.42,
2.2,
31.55.
4«l1.351,

0.013.

27,
32.62.

21, “2.41,

0.018,
10.45.
25.56.
37.38,
51.58.
65.62,

.12,
22.05.
36.0%.
50.03,
63.89,

52.

35.

0.020.
12.44,
28.n2,
A% K5,
62.08,
79.53.

10.84.
26.70,
a2.9h,
60.15,
77.58.,

9.016,

9.83,
21.94,
34.89,
%&8.19,
61.67,

3.4,
.54,
33.43,
k.70,

3,-0.794,
. e0.17,

9.029.
13.15,
27.17.
46.23,
63.60,

1].48.
27 .34,
44.32,
61.64.
19.13,

582,-0.786,
&5,
S,

33,

85

0.015
9.27,
21,45,
35.21.
«%.52.
63.78,

62.2).

.016,
LA2, 13.52.
29.8n0,
46 .94,
66,59,
81.97,

asin3.
62.45.
80.01.

17,56,
38.74,
60,68,

30.50, 32.76,

.845,-0.952, 0.01
.05,
.17,

l10.56.
25.53.
al.9x.
59.14.
76.74.
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27. Jl.
G3.34,
61.07,
78.72.

9.69,
22.24,
35.351.
43.76,
62.06,

11.05.
23.81.
36,98,
50.24,
63.54,

7.
57,

~0.685,
5.74,
13.05,
20.79.
27 .66,
i8.34,

0.013.

6.553.
13.90.
21.91,
308.41,
39.35.

0.015,

T
18,21,
n.%a,
“5.33.

56.30,

3.5
19.5
3.7
hh. 8
58.3

50.84.
84.16.

ORIGINAL PAGE IS

OF POOR QUALITY

0.019,

0.021. 1.

e.024,

0.018,

1.141.
17.23,
43.77,
70.52,
97 .96.1

.67,119.58.122.49.125.30.,1

0.713.

«3.52,

1.002,
11.81,
25.10.
37.14.
53.12.
66.95,

1.169,
tn.07,
29.85,
46 .74,
64.01,
81.48,

0.%15,
11.14,
23.35,
36.36.
49.68,
63.13,

, N.B42,

10.%6,
22.91.
34 .78,
S1.11.
£5.35.

33.%4.

19.83.,
al.1é,
63.13,
85.71.

1.030,

15.69.
29.10.
65.75,
§3.01,
80.70,

1.026,

12.42.
25.36,
38,45,
$1.71.
$5.02,

9.8364.

a4.992.
12.33
25.16.
MEE
52.38.
66,353,

1.442,

2.533,
21.76,
a6 .68,
73.55.
01.049.
23.92/

46,

2.9041,
13.
26
“0.
34,
63.

2,359,
15.7
3.
LIS
65.
83.

1.883,
12.
2%.
37,
51.
64.

1.715,
11.73,
260,
38.37.
52.71.
86.927

3.o071,
22.13.
“«3.58.
£5.57,
37 .67.

98,102.45.1064.92.107.39,109.86~

64, 96.
82.6397

66.50/

1.679.

10.84.
a2,
36
a7

2.0%2.
12.62.
26 .05,
40.16.
$3.71.
67.377



T3AAA KO1188% 13X1X20

irest
ipost
nx

ny
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nchop
lpr
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irez

APPENDIX C

INPUT FILE FOR SIMPLIFIED MECHANISM WITH FIVE CHEMICAL REACTIONS

3]

ncfilm 200
nctap8 9999
nclast 4000

cafilm 5.0
cafin 360. 0
cadump -90. 0
dcadmp 10.0
angmom 1.0
cyl 1.0

dy 0.0
pgssw 1.0
sampl 0.0
dti 1. 04146784
dtmxca ?. 99e+9
dtmax F. 99e+9
tlimd 0.0
twfilm 9. 9Fe+9
twfin ?. 99e+9
fchsp 0.25
stroke 0.0
squish 100. 0
rpm 0.0
atdc 0.0
conrod 16. 269
offset 0.0
swirl 0.0
swipro 1.01e-10
thsect 0.5
epsy 1. 0e-3
epsv 1. Q0e-3
epsp 1. 0e-—-4
epst 1. Qe-3
epsk 1. Qe-3
epse 1. Oe-3
gx 0.0

gy 0.0

gz 0.0
tcylwl 400.0
thead 400. 0
tpistn 400.0
tvalve 400.0
TEMPI 400. 0O
pardon 0.0

a0 0. 1

b0 1.0
anc4 0. 05
adia 0.0
anuQ 0.0
visrat-. 666665667
tcut B0O. O
tcute 1200. 0
epschm 0. 20
omgchm 1.0
TKEL 2. 250E+4

2-D COMBUSTOR.

10

TKESW 1.0
sgsl 0.0
uniscal 0.0
airmul 1.457e-5
airmua 110.0
airlal 252.0
airla2 200.0
expdif 0.6
prl 0.74
rpr 1.11
rprq 1.0
rpre 0. 769231
r5C 1.11
xignit 2. 0e+3
T1IGN 0.0
TDIGN 9. IFE+T
calign -27.0
cadign .6
iignll 1
iignrl 1
Jignfl 1
Jigndl 1
kignbl 2
kigntl 2
iigni2 1
iignre 1
Jjignf2 1
Jignd2 1
kignba 2
kignta 2
kwikeq O
numnoz 1
numvel 1
injdist 1
kolide 1
tliny 0.0
tdiny P. 9Fe+9
catiny -52.0
cadiny 2. 672
tspmas 9. 208
pulse 0.0
tnparc 4000.0
Thop 0. 7436
tpi 350. 0
turbd 1.0
breakup 1.0
evapp 1.0
drnoz 0.0
dinoz 0.1
dthnozr 0.0
tiltxy 0.0
tiltxz 0.0
cone 62. 5
dcone 12.5
anoil 1.0
smT 5. 00e—-4
ampO 0.0
4000. 0
npo 14
nuni f 0
1 1 0.0 0.0
2 1 195 0.0
3 1 391 0.0
4 1 Qs 0.0
5 1 742 0.0



APPENDIX C - Continued.

[N w)

000

. 016

o11

016

oo8
016
000
008
008

. 011

& 1 .977 0.0
7 1 1172 0.0
8 1 1.368 0.0
9 1 1.563 0.0
10 1 1.758 0.0
11 1 1.954 0.0
2 1 2,149 0.0
13 1 2. 345 0.0
14 1 2. 540 0.0
nho 0
square 0.0
rcornr 0.0
nstrt 0
icont 11101111011110000000011000
mirror 1
nviane 2
0.0 -5.0 1.0e10 0 0O 000 1
-5. 0 ~-45.0 35.0 o1 1111
nvvvec 4
nvpvec o)
0.0 -45. 0 15. 0 0 1 (o)
3.0 -45. 0 15.0 0O 3 [
0.0 -5.0 1. 0el0 O 0 b
0.0 -5.0 1. 0el0 v} Q 13
nvcont 2
0.0 -45. 0 15.0 [9) 3 o]
0.0 -5.0 1.0el10 9] (o) &
nsp 12 7.
c3h8 rhol 0.0
o2 rho2 3.109be~-4 muw2 2.
n2 rhod 1.0809e-3 muwl 2
cod rhod4 1.4007e-5 mwd 34,
20 rho5 7.0030e-& muw3 18.
h rthobé 0.0 mwé 1.
ha rho7 0.0 mw7 2.
o rhoB 0.0 mwB 16
n rho% 0.0 mw? 14.
oh rhotQ 0.0 mwiO 17
co rholl 0.0 mwll 2
no rhol2d 0.0 mwi2 30.
rtout 0.0
topout 1.0
botin 1.0
distamb 0.0
pamb 1. 62279e+b
tkeamb 0.10
sclambh Q.278450
spdambl Q.0
spdamb2 3. 10946e-4
spdambd3 1. 0807e-3
spdamb4d 1.4007e—-5
spdamb5 7. 0030e-6
spdambsé 0.0
spdamb7 0.0
spdambB 0.0
spdamb? 0.0
spdaml0 0.0
spdamll 0. 0O
spdami2 0.0
win 4023. 40
spdin0O!l 0.0
spdinga 3. 1076e-4
spdinC3 1. 0B07e-3
spdinQ4 1. 4007e-5
spdin03 7. 0030e—-6&6

008

htf2
htf3
htfa
htfS
htfé
htf7
htfrB
htf?
htfl10
htéll
htfl12

11

0.0
0.0
-93. 965
-57.103
51. 631

58. 989
112. 520
. 289
-27. 200

21.45%



spdin0é
spdin0O7
spdin08
spdin09
spdini0
spdinll
spdinl2
nrk
cfl 1.
cb!

amli

bm{

ael 0.

bel 0.

cf2 3.
cb2 3.
ama
bma
aed
be2
cf3 1.
cb3 7.
am3
bm3
ae3
be3
cf4d 2.
cb4 1.
ami
bm4
aed
bed
cfS 2.
cb3d
amS
bmS
aeS
beS
nre
asl 0.
anl
bni
asea 0.
ana
bn2
as3 0.
an3
bn2
asd4 -0
and
bn4
as5S 1.
and
bnS
asbd 0.
ané
bné

0.0
0.0
0.0
0.0
0.0
0.0
0.0
S
0000e12
0.0
2 7
9] o)
1 1.85
0.
¥810e10
0000e+0
0 1
o 0
.0 0.a5
.0 .0
5587el4
5000Qel2
0 1
0 0
.0 1.0
.0 .0
6484e10
6000e+9
o] 2
o]
2.0
.0
230el4
o]
]
o
.0
.0
1)
9903207
] 0
0 0
431310
0 1
o ¢]
794709
o 0
0 0o
652937
0 1
0 ]
1586882
9] 1
0 QO
2808375
] 1
0 0

efl
ebl
o
0

0.
Q.
ef2
ebl

1. 5104e+4

0

0o
0.
o

2.0141e+4
2.0141e+4

OO MO

1.
&7
0.0

[« NeoleNe]

5. 9418e+4
1. ?2678e+4

O000

5. 70206e4

o}

(oM« NeNe

t
—
[+ Ry
w

i
e
Q
£

cCcGOonSooun

NOT0O0ONIO

o
[42]
o

@
-
>

0.0
0
B8
0.
0.

(o]
[}
0.5
.0
627be4
Q00

0000

o
0
.0
.0

. 0

[eNeoNaNa}

. 79216

. 6554

n
Q
[l NeNe]
n3 3] o

w

1f1
bl

.0
1.0

1£5

b3

oOQOmMO

r

[a]
—

5]

n

n
w

&)}

n n
QOWVw OO O‘Dg.O(Dm OCOw POw

n
o

[oNoNeNel

[eNeNoNe]

SCO0O0

QOO0

OC~02PO~WOOUOOWO O

eo.

- con, .
CO0NOOOOONODO0ONO0O0AOOOO0O0a:"

73074
o
o
503350
Y]

«

168370
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n.

oOOoMO CCOO0

[ole e le]
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w n n w mn
3] o W] n -

[+ Mo : OO0 OoaemMOoaooadoa
>

"

COOMN

(oo NeoNe]

Q000

. —
QOO0 oocnhn

[N ReNe]

OO0

. 343428

0o
0

. 340016

0
0

. 143814

0
0

. 163490

0
o

. 868320

Y]
0

. 574240

-

o

n.

M

oomno

-
.

OQOMO O00O0

QOMO

(R o]

OO0 OO OO0 OO0

SO

m
v
—

esa

es3

esd

esd

esd

. 01114668

.0158715

. 0269699

. 0142865

. 0463471

. 0414570
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TABLE I. - ENGINE PARAMETERS AND TEST

CONDITIONS

Engine stroke, cm
Compression ratio

Volume of piston bowl: cm

Squish clearance, cm

.....

Connecting rod 1ength. .

rpm

Initial engine air temperature, K

Initial engine pressure atm

Fuel

Starting crankang1e of anect1on

Injection duration,

deg

Injection angle, deg

Starting crankangle of 1gn1t16n

Ignition duration,

deg

dég.

éeé"

9.55
6.54

. 58.8
0.1819
16.269
1600

400
1

isoctane
52 BTDC
12.672

. 60
27 BTDC
9.6
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Uyay = 7.84B2BEH02, Vy,y = 2.94169E+03. 305 PARTICLES IN THE SYSTEM
Wuax = 3.76695E+02

(@) GAS VELOCITY AT 29.05° BTDC. (D) FUEL SPRAY AT 29.95° BTIC.

Uyax = 8.84606E+02, Vy,\ = 3.38367E+03. 122 PARTICLES IN THE SYSTEM
Wvax = 1.24565E+03
(C) GAS VELOCITY AT 11.37° BTDC. (d) FUEL SPRAY AT 11.37° BTDC.

L = 6.57971E+02, H = 2.96074E+03. cghyg ACROSS J = 1 PLANE, L = 1.17529E-02.
DQ = 2.30277E+02 H = 1.05776E-01. 11.370, D@ = 1.17529E-02
(&) TEMPERATURE AT 11,379 BTDC. (f) FUEL VAPOR AT 11,379 BTDC.

FIGURE 1. - RESULTS OF DISC GASOLINE-FUELED PISTON ENGINE FOR CASE 1.
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VELOCITY ACROSS J = 1 PLANE, -29.17°. 472 PARTICLES IN THE SYSTEM
Uyax = 7.86088E+02, V)., = 2.94103E+03.

Wy = 9.79231E+02
(3) 6AS VELOCITY AT 29.179 BTDC. (b) FUEL SPRAY AT 29.17°% BTDC.

i

L = 4.83900E+02, H = 6.50552E402, Uyay = 1.02988E+03, V. = 3.34960E+03,
DQ = 1.66652E+01 -
Wuax = 1-083USE+03
(c) TEMPERATURE AT 29.17° BTDC. (d) GAS VELOCITY AT 13° BTDC.

432 PARTICLES IN THE SYSTEM L = 6.82538E+02, H = 2.92452E+03.
D@ = 2.24198E+02
(e) FUEL SPRAY AT 13.89° BTDC. (1) TEMPERATURE AT 13.89° BTIC.

FIGURE 2. - RESULTS OF DISC GASOLINE-FUELED PISTON ENGINE FOR CASE 2.

ConiiAL TAGE IS
OF POOR QUALITY,
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L = 4.83019E-07. H = 1.91309E-02,
DQ = 1.91313E-03

(g) FUEL VAPOR AT 13.89° BTDC.

L = 0.00000E+00, H = 2.13202E+00,
DQ = 2.13202E-01

(h) €O, AT 13.89° BTDC.

FIGURE 2. - CONCLUDED.

trvl
fiet
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oy

R

Uyax = 7-02298E+02, Vuax = 1.69386E+03.
Wyax = 1.27611E+03
(a) GAS VELOCITY AT 1.82° BTDC.

123 PARTICLES IN THE SYSTEM, -1.82°

(b) FUEL SPRAY AT 1.82° BTDC.

N S

JTEMP ACROSS J = 1 PLANE. L = 9.13304E+02,
H = 2.98323E+03, -1.820, D@ = 2.29325E+02

(c) TEMPERATURE AT 1.82° BTDC.

[

cshg ACROSS J = 1 PLANE, L = 7.23420E-03.
H = 6.510786-02. -1.82°, D@ = 7.23u20£-03

(d> FUEL VAPOR AT 1.82° BTDC.

FIGURE 3. - RESULTS OF DISC GASOLINE-FUELED PISTON ENGINE FOR CASE 3.
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VELOCITY ACROSS J = 1 PLANE. -0.16°,
Uax = 1.20566E+03. V,, = 3.54255E+03.

Wyay = 1. 16764E+03
(2) 6AS VELOCITY AT 0.16° BTIC.

28 PARTICLES IN THE SYSTEM

(b) FUEL SPRAY AT 0.16% BTDC.

\\\

.TEMP ACROSS J = 1 PLANE. L = 9.71871E+02,
H = 2.62905€+03, -0.16°, DQ = 1.65718E+02

(c) TEMPERATURE AT 0.16° BTDC.

C3 g ACROSS J = 1 PLANE, L = 9.09029€-03,
H = 8.18126E-02, -0.16°, D@ = 9,09029E-03

(d) FUEL VAPOR AT 0.16° BTDC.

FIGURE 4. - RESULTS OF DISC GASOLINE-FUELED PISTON ENGINE FOR CASE 4.
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VELOCITY ACROSS J = 1 PLANE, VELOCITY ACROSS J = 1 PLANE, T = 4.15503E-03.
T = 8.26447E-03, CYCLE 1200, CYCLE 1200, Upyy = 5.59223E404, Vyuy =
Upax = 1-20066E+04, Voo = 1.21813E+04. 5 c3p5ep+on, W, = 5.330206+04

Wpax = 1.73781E+04

TEMP ACROSS J = 1 PLANE, L = 1.07907E+03, TEMP ACROSS J = 1 PLANE, L = 5.29182t+02,

H = 1.58762E+03, T = 8.26447€-03, CYCLE H = 1.48754E+03, T = 4.15503-03, CYCLE
1200, MIN = 1,01551E+03, MAX = 1.65119E+03, 1200, MIN = 4.093876+02, MAX = 1.60733E+03.
D@ = 6.35683E+01 DQ = 1.19794E+02

(a) OCTANE COMBUSTION. (b) PROPANE COMBUSTION.

FIGURE 5. - SIMULATION OF COMBUSTION IN TWO-DIMENSIONAL COMBUSTOR.
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